Equivariant de Rham cohomology and gauged field theories
ثبت نشده
چکیده
5 Mapping supermanifolds and the functor of points formalism 31 5.1 Internal hom objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 The functor of points formalism . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 The supermanifold of endomorphisms of R0|1 . . . . . . . . . . . . . . . . . . 36 5.4 Vector bundles on supermanifolds . . . . . . . . . . . . . . . . . . . . . . . . 37 5.5 The supermanifold of maps R0|1 → X . . . . . . . . . . . . . . . . . . . . . . 41 5.6 The algebra of functions on a generalized supermanifold . . . . . . . . . . . . 43
منابع مشابه
Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras
Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivari...
متن کاملDouble derivations and Cyclic homology
We give a new construction of cyclic homology of an associative algebra A that does not involve Connes’ differential. Our approach is based on an extended version of the complex Ω q A, of noncommutative differential forms on A, and is similar in spirit to the de Rham approach to equivariant cohomology. Indeed, our extended complex maps naturally to the equivariant de Rham complex of any represe...
متن کاملAn Algebraic Model for Rational Torus-equivariant Spectra
We show that the category of rational G-spectra for a torus G is Quillen equivalent to an explicit small and practical algebraic model, thereby providing a universal de Rham model for rational G-equivariant cohomology theories. The result builds on the Adams spectral sequence of [12], the enriched Morita equivalences of [23], and the functors of [27] making rational spectra algebraic.
متن کاملOn Quantum De Rham Cohomology Theory
We define the quantum exterior product ∧h and quantum exterior differential dh on Poisson manifolds. The quantum de Rham cohomology, which is a deformation quantization of the de Rham cohomology, is defined as the cohomology of dh. We also define the quantum Dolbeault cohomology. A version of quantum integral on symplectic manifolds is considered and the corresponding quantum Stokes theorem is ...
متن کاملEquivariant Crystalline Cohomology and Base Change
Given a perfect field k of characteristic p > 0, a smooth proper k-scheme Y , a crystal E on Y relative to W (k) and a finite group G acting on Y and E, we show that, viewed as a virtual k[G]-module, the reduction modulo p of the crystalline cohomology of E is the de Rham cohomology of E modulo p. On the way we prove a base change theorem for the virtual Grepresentations associated with G-equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013